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Bubbly flow and its transitions in vertical annuli is studied using population balance technique. Bubble
breakup and coalescence is accounted separately to track the evolution of the bubble size during the
simultaneous flow of gas and liquid. The conventional two-fluid model is used to simulate the hydrody-
namics. The model enables the prediction of voidage profile at any axial location. Presence of peak in the
void distribution at the walls of the annulus, center of the annulus and both at walls and centers is
observed depending on the phase superficial velocities. Further, transition from bubbly to slug and bub-
bly to dispersed bubbly is predicted based on the evolved bubble size. The model prediction gives a good
match with the experimental data and existing theory. A shift in the transition boundary is noted due to
the variation in inlet bubble size and the dimension of the annulus.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Gas liquid two phase flow is observed frequently in diverse
engineering systems covering chemical and petroleum processing,
oil and gas extraction and transportation, thermal and nuclear
power generation etc. In spite of its wide applications two phase
flow is one of the least understood domain of fluid dynamics.
The two phases can get distributed in a large number of varieties
(commonly termed as flow regimes or flow patterns) through
any conduit during their motion. This renders the analysis and pre-
diction of flow behavior extremely difficult. For decades scientists
and engineers are making tireless efforts to understand two phase
flow through experimental investigations (Serizawa et al., 1975;
Zun, 1990; Liu and Bankoff, 1993; Liu and Wang, 2001; Lucas
et al., 2005) and to model them by developing appropriate theory
(Ishii, 1975; Ishii and Mishima, 1984; Drahos et al., 1991; Yeoh and
Tu, 2006; Lucas et al., 2007). Most of such endeavors consider two
phase flow through circular tubes. The motivation for such a choice
emerges from the wide use of circular geometry in engineering
applications. Nevertheless, flow through annular passage of circu-
lar cross section also occurs frequently. Well bores for the explora-
tion and extraction of oil and natural gas, double pipe heat
exchangers, different cooling passages, various gas lift devices are
examples where two phase flow occurs through concentric circular
annulus. Accordingly, flow of a two phase mixture through annular
ll rights reserved.
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passage has been investigated by several researchers (Sadatomi
et al., 1982; Caetano, 1984; Kelessidis and Dukler, 1989; Hasan
and Kabir, 1992; Caetano et al., 1992; Das et al., 1999; Sun et al.,
2004).

Sadatomi et al. (1982) studied air water two phase flow
through vertical annulus of 15 mm inner diameter and 30 mm
outer diameter and determined the average void fraction using
quick closing valve technique. They also proposed the transition
boundary for bubbly to slug flow. Caetano (1984) investigated
air water and air kerosene two phase flow through annuli and ob-
served the transition of bubbly flow to slug flow at a void fraction
of 18% and 25% for these two cases respectively. Kelessidis and
Dukler (1989) conducted experiments for air water flow in
vertical concentric and eccentric annuli of 50.8 mm inner diame-
ter and 76.2 mm outer diameter. They have used probability den-
sity function analysis of their conductivity probe signals to
identify various flow regimes. Based on this a map has also been
introduced for transitions of different flow patterns. Mathematical
models based on the physical understanding of different flow pat-
terns have also been developed that matches well with their
experimental results.

Hasan and Kabir (1992) studied the effect of annular gap on two
phase hydrodynamics using three different annuli. They have used
drift flux model to predict average void fraction. Caetano et al.
(1992) proposed a transition criterion for bubbly to slug flow using
a hydrodynamic model based on eight empirical constants. Their
flow pattern map matches well with the data of Hasan and Kabir
(1992).

http://dx.doi.org/10.1016/j.ijheatfluidflow.2009.11.006
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Nomenclature

a empirical constant of Eq. (18) (dimensionless)
b empirical constant of Eq. (18) (dimensionless)
b* empirical constant of Eq. (19) (dimensionless)
B empirical constant of Eq. (9) (dimensionless)
BB number of new borne bubbles due to break up (dimen-

sionless)
BC number of new borne bubbles due to coalescence

(dimensionless)
c1 constant in Eqs. (15) and (17) (dimensionless)
c2 empirical constant in Eq. (22) (dimensionless)
c3 empirical constant in Eq. (23) (dimensionless)
CD drag coefficient for a single bubble (dimensionless)
CFL interfacial friction factor (dimensionless)
d diameter of the bubbles (m)
dc critical bubble diameter for bubble breakup frequency

(m)
D pipe diameter (m)
DB number of dying bubbles due to break up (dimension-

less)
DC number of dying bubbles due to coalescence (dimen-

sionless)
Dsurf maximum bubble size possible in dispersed bubbly flow

(m)
f friction factor (dimensionless)
fGo wall friction factor of gaseous phase (dimensionless)
fLo wall friction factor of liquid phase (dimensionless)
fv volume fraction of daughter bubble to mother bubble

(dimensionless)
FLGz interfacial force to gaseous phase in axial direction

(kg m s�2)
FLGr interfacial force to gaseous phase in radial direction

(kg m s�2)
Fdispz mass transfer force due to turbulent dispersion in axial

direction (kg m s�2)
Fdispr mass transfer force due to turbulent dispersion in radial

direction (kg m s�2)
FWGz wall gas friction force in axial direction (kg m s�2)
FWGr wall gas friction force in radial direction (kg m s�2)
FWLz wall liquid friction force in axial direction (kg m s�2)
FWLr wall liquid friction force in radial direction (kg m s�2)
gx gravitational acceleration in x direction (m s�2)
g(a) breakage frequency of the bubbles of diameter a (s�1)

h(a, b) effective swept volume rate for bubble diameter a and b
(s�1)

I normalization coefficient described in Eq. (18) (dimen-
sionless)

k empirical constant in Eq. (15) (dimensionless)
m empirical constant of Eq. (19) (dimensionless)
n empirical constant of Eq. (9) (dimensionless)
n(r, z, t, d) number of bubbles at (r, z) of size d at time t (dimen-

sionless)
p(a, b) film rupture efficiency of bubbles of diameter a and b

(dimensionless)
P pressure of the mixture phase (kg m�1 s�2)
r radial direction of the conduit (m)
RB average bubble diameter (m)
t time (s)
Um mixture velocity (m s�1)
wg axial velocity of dispersed phase (m s�1)
wl axial velocity of continuous phase (m s�1)
v(d) volume of the bubble of diameter d (m3)
ug radial velocity of dispersed phase (m s�1)
ul radial velocity of continuous phase (m s�1)
Xc empirical constant of Eq. (9) (dimensionless)
Yc empirical constant of Eq. (9) (dimensionless)
z axial direction of the conduit (m)

Greek symbols
a dispersed phase void fraction, (dimensionless)
DPL0 single phase frictional pressure drop (kg m�1 s�2)
e energy dissipation rate per unit mass (m2 s�3)
g(a, b) daughter bubble probability distribution (dimension-

less)
k(a, b) coalescence frequency of bubble diameter a and b (s�1)
lg viscosity of discrete phase (kg m�1 s�1)
ll viscosity of continuous phase (kg m�1 s�1)
m(a) number of bubbles formed from the breakage of a bub-

ble diameter a (dimensionless)
nmin non-dimensional minimum daughter bubble size

(dimensionless)
ql density of continuous phase (kg m�3)
qg density of dispersed phase (kg m�3)
qm density of the mixture (kg m�3)
r surface tension (kg s�2)
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Das et al. (1999) made experimental observation for air–water
upflow through concentric annuli of three different annuli (A:
50.8 mm/25.4 mm, B: 38.1 mm/12.7 mm, C: 25.4 mm/12.7 mm).
To identify the distribution of void fraction in different flow re-
gimes parallel plate type conductivity probe was used. Flow re-
gimes were identified using PDF of the signals obtained. Further,
they have developed a transition model and compared the model
prediction for bubbly to slug flow with different experimental
results.

Recently, Sun et al. (2004) observed bubble distribution pattern
in their 4.1 m long borosilicate glass tubing of annular cross sec-
tion. The outer diameter of the tube is 38.1 mm and inner diameter
is 19.1 mm. Impedance void meter is used to measure the average
void fraction of the test rig. Using the signals obtained from an
impedance probe flow patterns have been recognized through a
neural network. Their analytical model predicts the transition from
bubbly to slug flow at a void fraction of 0.191. Some efforts have
also been made for two phase flow through annular conduit in hor-
izontal and inclined orientations. The investigations made by
Osamasali and Chang (1988), Ekberg et al. (1999) and Wongwises
and Pipathattakul (2006) are worth mentioning.

The review of literature reveals that most of the previous
works on two phase flow through annulus are experimental in
nature. Time to time some efforts has been made to analyze
the flow phenomena through theoretical models. These are pri-
marily phenomenological models developed for specific control
volumes based on simplified assumptions. Moreover, in most of
the cases these phenomenological models were derived as exten-
sions of the transition criteria previously proposed for circular
geometry. Though these models are reasonably successful in pre-
dicting the regime boundary they do not provide much insight
into the flow behavior at any location or its development along
the conduit axis. It is needless to say that a continuum based
model which takes care of the spatial and temporal variation of
the phase velocities along with the mutual interactions of the
phases will not only be able to give a clear picture of the
hydrodynamics but will also provide a better prediction of
transition.
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The direct application of continuum based models of fluid
dynamics which are commonly used in case of single phase flow
poses some difficulty in case of two phase flow. Further, presence
of different regimes in case of two phase flow increases the com-
plexities. To tackle these situations flow regime based models are
best suited as the underlying physics behind the regimes are differ-
ent. Among different types of flow regimes bubbly flow can be de-
scribed as a homogeneous mixture of gaseous bubble and primary
liquid phase. This leads various researchers to model bubbly flow
using homogeneous flow model or drift flux model (Zuber and
Findlay, 1969). Later on efforts has been made with two-fluid mod-
el (Wu et al., 1998; Fu and Ishii, 2003) and population balance
model (Yeoh and Tu, 2004; Cheung et al., 2006) to investigate bub-
bly flow in circular conduit. Though different numerical techniques
(Bunner and Tryggvason, 2002) are employed to simulate bubble
evolution in circular tube, population balance technique coupled
with two-fluid model emerges as an effective and robust technique
(Cheung et al., 2006; Das et al., 2009a,b; Yeoh and Tu, 2004) for
predicting interfacial behavior in bubbly flow. Unfortunately, not
much effort has been made to simulate bubbly flow and its transi-
tion in an annulus through computational approach.

In the present work a Eulerian–Eulerian two-fluid model have
been used to simulate bubbly flow through the annuli. A Lagrang-
ian population balance technique has been super imposed in the
model to track the evolution of the bubbles due to breakup and
coalescence. A criteria based on maximum bubble diameter has
been chosen to predict bubbly to slug transition. The model predic-
tion shows excellent agreement with the available experimental
results and theory. Further studies have been done to find out
the voidage profile in bubbly flow and different peaked structures
depending on the phase superficial velocities. Effect of bubble size
at the inlet of the conduit and the annular spacing on transition
boundary has been investigated. The transition from bubbly to dis-
persed bubbly flow has also been predicted and validated against
the available experimental data.

2. Model development

The flow phenomena simulated in the present work is sche-
matically shown in Fig. 1. Present model is developed in two
Fig. 1. Bubble distribution and grid arrangement in annuli filled with air water
bubbly flow.
parts. Initially, basic flow field of gas and liquid is obtained using
axisymmetric two-fluid model. Next, the population balance tech-
nique is used to determine the evolution of bubble size and dis-
tribution through the process of coalescence and break up. In
this stage the spatial velocity of the phases has been used as
the input. Following assumptions has been made for the model
development:

(i) The two fluids are incompressible and Newtonian.
(ii) Properties of fluids are uniform and constant.

(iii) Bubbles are spherical in shape having diameter as the char-
acteristic length.

(iv) Isotropic turbulence is considered for calculating the turbu-
lence intensity and the eddy size. Turbulence properties are
linked with mean flow velocities to close the system of
equations.

(v) Bubble breakage and coalescence is taken as the only source
term in the population balance equation. Deformation,
growth shrinkage, nucleation and condensation are not con-
sidered in the present model.

(vi) Binary breakage and coalescence is considered.

Other assumptions are described in the models wherever
necessary.

2.1. Two-fluid model

In the two-fluid model (Anderson and Jackson, 1967) it is as-
sumed that two phase flow consists of two individual single phase
flows. Contribution of each of the phases is considered introducing
respective phase fractions. Two set of conservation equation simi-
lar to single phase flow system is used with appropriate correla-
tions for interfacial interactions. Such interactions are cumulative
as bubbles are not individually tracked in an Eulerian–Eulerian ap-
proach of modeling.

2.1.1. Continuity equation
In the absence of mass transfer between the two phases the

mass conservation equations can be written for each of the phases
as follows:

Gas phase:

@

@t
½q1ð1� aÞ� þ 1

r
@

@r
½rq1ð1� aÞu1� þ

@

@z
½q1ð1� aÞw1� ¼ 0 ð1Þ

Liquid phase:

@

@t
½qga� þ

1
r
@

@r
½rqgaug � þ

@

@z
½qgawg � ¼ 0 ð2Þ

Here a signifies the phase fraction of the gaseous phase and (1 � a)
gives the phase fraction of the liquid phase. Subscripts l, g denotes
liquid and gas phase respectively.

2.1.2. Momentum conservation
The temporal and the spatial averaging of the fluid proper-

ties has been made for the derivation of momentum equa-
tion. As the macroscopic field of one phase is not
independent of the other, the interaction terms of each phase
across the interface appears in the field equation of the
momentum conservation (Frank et al., 2004). Along with the
interfacial forces, force due to interaction with the solid wall
needs to be taken care of using appropriate closure equations.
The momentum equation of the two phases can be written as
follows:

Gas phase:
r momentum:
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@

@t
½qgaug � þ

@

@r
½qgau2

g � þ
@

@z
½qgaugwg �

¼ �a
@P
@r
þ aqggr þ lg

@2

@r2 ðaugÞ þ
lgaug

r2 þ
lg

r
@

@r
ðaugÞ

þ lg
@2

@z2 ðaugÞ � FWGr � FLGr � Fdispr ð3Þ

z momentum:

@

@t
½qgawg � þ

@

@r
½qgaugwg � þ

@

@z
½qgaw2

g �

¼ �a
@P
@z
þ aqggz þ lg

@2

@r2 ðawgÞ þ
lg

r
@

@r
ðawgÞ

þ lg
@2

@z2 ðawgÞ � FWGz � FLGz � Fdispz ð4Þ

Liquid phase:
r momentum:

@

@t
½q1ð1� aÞu1� þ

@

@r
½q1ð1� aÞu2

1� þ
@

@Z
½q1ð1� aÞu1w1�

¼ �ð1� aÞ @p
@r
þ ð1� aÞq1gr þ l1

@2

@r2 ðð1� aÞu1Þ

þ l1ð1� aÞu1

r2 þ l1

r
@

@r
ðð1� aÞu1Þ þ l1

@2

@z2 ðð1� aÞu1Þ

� FWLr � FLLz þ Fdispz ð5Þ

z momentum:

@

@t
½q1ð1� aÞw1� þ

@

@r
½q1ð1� aÞu1w1� þ

@

@Z
½q1ð1� aÞw2

1�

¼ �ð1� aÞ @p
@z
þ ð1� aÞq1gz þ

l1

r
@

@r
ðð1� aÞw1Þ þ l1

@2

@r2

�ðð1� aÞw1Þ þ l1
@2

@z2 ðð1� aÞw1Þ � FWLz � FLLz þ Fdispz ð6Þ

P is assumed as the average pressure of the mixture and it can be
evaluated using the equation of state in the following manner:

P ¼ ðqlal þ qgagÞRT ð7Þ

Forces due to wall lubrication, interfacial forces to the liquid and
gaseous phases are described in the next section.
2.1.3. Interfacial momentum transfer
Interfacial forces which affect the hydrodynamics are the drag

force, the virtual mass force, the transverse lift force and the turbu-
lence dispersion force. Among these, drag force has the major influ-
ence over the development of the flow field in vertical upflow.
Lateral lift force is also a prime interfacial force for gas liquid
two phase flow. Tomiyama et al. (2003) proposed lateral lift coef-
ficient based on bubble sizes. In the present model this force has
not been considered. Incorporation of such force is expected to im-
prove the prediction. This clearly leaves a scope for further
improvement of the present model.

As the generic nature of the radial and axial forces is same,
directions of the forces are omitted in the respective equations.
For the vector quantities associated with the forces we have used
their non-directional forms by putting a bar over the symbols of
the respective vectors. For the directional equation of the forces
the quantities under the bar will be substituted by the respective
directional form of the vectors. For the flow of discrete bubbles
in a continuous medium some simplification can be made to club
the major interfacial forces. Following the development of Richter
(1983) the net interfacial force can be taken as:
FLG ¼
2CFL

D

ffiffiffi
a
p

qgðug � ulÞjug � ulj þ
a
2
q1ug

@

@r
ðug � ulÞ ð8Þ

In the above expression CFL is interfacial friction factor which in-
cludes a modified relationship for drag in a two phase medium.

CFL ¼ CD

ffiffiffi
a
p
ð1� aÞ�1:7 q1

qg

D
2RB

ð9Þ

where RB is average bubble radius and CD is drag coefficient for a
single bubble. Eq. (9) needs the information of bubble diameter
which is determined in the present work through population
balance.

FWL in Eqs. (5) and (6) is the wall liquid friction force. Based on
Chisholm’s (1973) correlation it can be written as follows:

FwL ¼ 1þ ðY2
c � 1Þ BðXcð1� XcÞÞ

2�n
2 þ X2�n

c

� �h i
DPL0 ð10Þ

Here DPL0 is the single phase friction pressure drop, B is an empir-
ical constant dependent on the fluid pair and n = 0.25 for air water
system. Xc and Yc can be expressed as follows:

Xc ¼
1

1þ 1�a
a

ql
qg

ul
ug

and Yc ¼
fGoql

fLoqg

 !0:5

ð11Þ

Wall friction factor of gaseous phase is also calculated in the same
manner.

The turbulent dispersion force of gaseous phase (Lopez de
Bertodano, 1998) is considered in the form of Favre averaged
variables.

Fdisp ¼ CIDCD
ytg

Sctg

ral

al
�rag

ag

� �
ð12Þ

CTD and CD are the turbulent dispersion force coefficient and the
Drag force coefficient for a single bubble. CTD is taken as 1.0 in the
present simulation. ctg is the turbulence kinetic viscosity and Sctg

is the turbulent Schmidt number of the gaseous phase.
2.2. Population balance equation

To keep a track of the bubble kinetics a population balance
(Kumar and Ramkrishna, 1996) equation has been incorporated
in the present model. As interactions of a large number of bubbles
of various sizes are present, tracking the bubble population is nec-
essary to determine the dynamics of bubble evolution through coa-
lescence and breakage. Birth and death of bubbles due to breakage
and coalescence depend on the transport properties and velocities
of neighboring continuous phase. The birth and death of bubbles
are cumulative functions of the entire population. So an interre-
lated integral–differential equation must be tackled numerically
to resolve the characteristics of the individual bubbles.

The population balance equation can be expressed in the fol-
lowing generalized form:

@nðr; z; t;dÞ
@t

þ ug
@nðr; z; t;dÞ

@r
þwg

@nðr; z; t;dÞ
@z

¼ BBðr; z; t; dÞ � DBðr; z; t;dÞ þ Bcðr; z; t;dÞ � Dcðr; z; t;dÞ ð13Þ

In the present model above equation is discretized in order to
solve it with the usual grid based technique keeping internal con-
sistency with regard to the second order moment of distribution
(Kumar and Ramkrishna, 1996). Discretization of the bubble popu-
lation into different subgroup has been done based on uniform vol-
ume intervals and bubbles of any size other than the pivotal sizes,
formed due to bubble breakage, are distributed among the neigh-
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Fig. 2. Scheme of redistribution of daughter bubbles, generated due to breakage,
into their immediate neighbors.
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boring sizes keeping the bubble mass and number fixed. The
scheme of redistribution of the daughter bubbles is shown in
Fig. 2. Following conditions are satisfied during the redistribution:

for i ¼ 1 and 2 Vi ¼ nbiVbi þ ntiVti & nbi þ nti ¼ 1 ð14Þ

Present model only recognizes the appearance or disappearance of
the newly born or dead particles in a fixed control volume. How-
ever, their redistribution is considered as random and solely guided
by the convection of mixture phase. Present model is developed
only for binary coalescence and binary breakage of the bubble.

2.2.1. Break up process
Following the concept of classical statistical approach of isotro-

pic turbulence the two phase mixture is assumed to be an assem-
blage of eddies having their respective kinematics. Each eddy is
characterized by its size and energy (Kostoglou and Karabelas,
1998). Due to the collision with these turbulent eddies fragmenta-
tion of bubbles takes place. Breakage of a bubble is possible only
when the turbulent kinetic energy of the striking eddy supply
the surface energy needed for the process. If the eddy size is larger
than the bubble characteristic length it is assumed that the inter-
action between them is unable to make any large deformation of
the bubble shape which can ultimately result into a breakage. This
type of collision only causes the transport of the bubble in the flow
field. Sizes of the daughter bubbles due to the collision of eddy and
bubbles depend on the strength of the eddy (Luo and Svendsen,
1996). But the collision frequency between them is solely guided
by the transport properties of the flow field. It is also assumed that
size and strength of eddies do not alter as a result of collision with
the bubbles. Further, it is assumed that the daughter bubbles
achieve a spherical shape instantaneously after its birth from its
predecessor.

Birth and death of bubbles due to breakup process can be calcu-
lated as follows:

BBðr; z; t; dÞ ¼
Z 1

d
gðd0 � d;dÞvðd0Þgðd0Þnðr; z; t;d0Þdd0 ð15Þ

DBðr; z; t;dÞ ¼ nðr; z; t; dÞgðdÞ ð16Þ

Here g(d1, d2) is the daughter probability distribution (1/m) for the
breakage of a bubble of diameter d1 + d2. v(d) is the number of bub-
bles formed from the breakage of a bubble diameter d. g(d) is the
breakage frequency of the bubbles of diameter d (1/s). g(r, z, t, d)
is the number density of a particular bubble diameter d at a fixed
coordinate (r, z) at any instant t.

The strength of the colliding eddy must be greater than the sur-
face energy of the bigger bubbles created by breakage event. Sim-
ilarly, according to the capillary pressure formulation (Wang et al.,
2003) the dynamic pressure of the turbulent eddy must be larger
than the capillary pressure of the smaller fragment of breakup.
Successful separation of the two bubbles depends on the contact
time of eddy and bubble which should be sufficient for drainage
or rupture of the intervening film between them. Based on the
model proposed by Kostoglou and Karabelas (2006) bubble break-
up frequency can be expressed as:

gðdÞ ¼ kð1� aÞ �
d2

� �1
3
Z 1

0

Z 1

nmin

ð1þ nÞ2

n
11
3

e
� 12c1r

2:04qc�
2
3d

5
3�

11
3

� �
d�dfv ð17Þ

Here fv is the ratio of the volume of mother and daughter bubbles
and e is the energy dissipation rate per unit mass. e can be estimated
(Ioannou et al., 2004) in terms of pipe diameter (D) and mixture
velocity (Um):

e ¼ fU3
m

2D
ð18Þ

Um is calculated as follows:

Um ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2

g þw2
gÞ

2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2

l þw2
l Þ

2
q

ð19Þ

C1 is an empirical constant and can be expressed in terms of fv as
follows:

C1 ¼ f
2
3
v þ ð1� fvÞ

2
3 � 1 ð20Þ

nmin is the non-dimensional minimum daughter bubble size that
can be obtained from the Kolmogroff microscale as described by
Tsouris and Tavlarides (1994). Daughter distribution probability
presented by Kostoglou and Karabelas (1998) is used in the present
model. Based on their theory the probability of size distribution of
daughter drops can be expressed as follows:

gðd1; d2Þ ¼
1

d1
d2
þ a
þ 1

1� d1
d2
þ b
þ 2ðz� 1Þ

bþ 0:5

 !
6l

pd3
2

ð21Þ

where I is the normalization coefficient and expressed as:

L ¼ 0:5
lnðlþ aÞ � lnðbÞ þ z�1

bþ0:5

and Z ¼ a
4bðlþ bÞðl� aÞ

a and b are parameters that define the shape of the daughter drop
size distribution function. In the present model the values a = 0.1
and b = 1 are used. This signifies ‘‘U” shaped bubble size distribution
(Kostoglou et al., 1997).

A bubble of size larger than a critical value will break up quickly
because of the instability of the liquid gas interface. The following
empirical equation was used by Carrica and Clausse (1993) to cal-
culate the bubble breakup rate due to instability:

gðdÞ ¼ b�
ðd� dcÞm

ðd� dcÞm þ dm
c

ð22Þ

where dc is the critical bubble diameter set as 27 mm for air water
system as followed by Carrica and Clausse (1993). b* and m are
model parameters and were set as 100 (1/s) and 6.0, respectively.

2.2.2. Coalescence process
For coalescence of bubbles to occur in a turbulent flow field of a

two fluid mixture the bubbles must first collide with each other
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and then remain in contact for a sufficient time so that the pro-
cesses of liquid film drainage, film rupture and finally coalescence
may occur (Coulaloglou and Tavlarides, 1977). During these pro-
cesses a turbulent eddy may separate the droplets and prevent
coalescence. To close the uncertain coalescence model maximum
particle volume, bubble collision frequency and bubble coales-
cence efficiency are required.

Three main mechanisms of bubble coalescence in a gas–liquid
system exist: (1) coalescence resulting from turbulent eddies, (2)
coalescence resulting from different rise velocities (buoyancy)
(Fu and Ishii, 2003) and (3) coalescence resulting from bubble
wake entrainment (Prince and Blanch, 1990). Nevertheless, in most
of the situations the influence of turbulent eddies over the coales-
cence process is dominant. The following expressions can be used
for the process of birth and death respectively due to coalescence:

Bcðr; z; t;dÞ ¼
1
2

Z vðdÞ=2

0
kðdv�v 0 ;dv Þnðr; z; t;dv�v 0 Þnðr; z; t; dv 0 Þdv 0 ð23Þ

Dcðr; z; t; dÞ ¼ nðr; z; t; dvÞ
Z 1

0
kðdv ; dv 0 Þnðr; z; t;dv 0 Þdv 0 ð24Þ

Here k(d1, d2) is the coalescence frequency of bubble diameter d1

and d2.
Details of coalescence process are described elsewhere (Das

et al., 2009a,b). The probability for a collision to result in coales-
cence is termed as coalescence efficiency. During all these pro-
cesses if the pair strikes with another eddy of sufficient strength
the coalescence process may terminate at any time without fusing
them.

Coalescence frequency k(d1, d2) is the product of the effective
swept volume rate, h(d1, d2) and film rupture efficiency p(d1, d2).
Effective swept volume rate is calculated using the analogy be-
tween kinetic theory of gasses and bubble coalescence phenomena.
According to Coulaloglou and Tavlarides (1977) effective swept
volume rate can be calculated as:

hðd1;d2Þ ¼ c2
e

1þ a
ðd1 þ d2Þ2 d

2
3
1 þ d

2
3
2

� �1
2 ð25Þ

Film rupture efficiency can be calculated using the exponential
function of the ratio of liquid film drainage time to drop contact
time. The bubbles have to be in contact for a certain period of time,
sufficient for the liquid film to reach the critical thickness. Effect of
Van der Waal’s force and force of electric double layer which can re-
tard the film drainage is neglected. Coalescence time is estimated
only as the time required for the film drainage between the bubbles.
If the bubbles are separated by an incoming eddy before the pro-
posed thickness is reached, no coalescence occurs. Film drainage
is controlled by inertia and surface tension forces (Chesters,
1991). For two bubbles of diameter d1 and d2 Coulaloglou and
Tavlarides (1977) proposed the film rupture efficiency is as follows:

Pðd1; d2Þ ¼ exp � c3qllle
r2ð1þ aÞ3

d1d2

d1 þ d2

� �4
" #

ð26Þ

Two case dependent numerical constants (c2 and c3) are associated
with coalescence rate function. c2 is related to the collision fre-
quency and c3 is related to the rupture efficiency. Further, these
coefficients also depend on the minimum film thickness h0, instan-
taneous film thickness h, and some other (Coulaloglou and Tavla-
rides, 1977) dimensionless constants associated with equations
expressing the contact time of two drops, the force compressing
two drops together, and the energy properties of the turbulent field.

Values of c2 and c3 are taken as 0.0055/�1.3404 and 5.4 � 108 as
suggested by Ioannou et al. (2004). They used the experimental
data of Lovick (2004) to fit the values of the above constants.
2.3. Boundary conditions and solution procedure

Following boundary conditions are employed to simulate the
flow of a gas liquid mixture through annuli:

i Both the phases have uniform velocity profile in the stream
wise direction and zero velocity in the crosswise direction.

ii No slip and no penetration conditions are imposed at the
walls.

iii Inlet void fraction (a) is taken as an input to the system of
Eqs. (1)–(6).

For the proper impositions of the no slip boundary conditions
finer grids have been adopted at the wall. Further, a small velocity
as per the logarithmic law (Lienhard and Lienhard, 2004) of buffer
layer is implemented at a very small distance from the conduit
wall.

In the population balance model initial condition for the bubble
size distribution is taken as:
nðr; z; 0;dÞ ¼ 0 ð27Þ

And inlet boundary condition is taken as:
nð0; z; t; dÞ ¼ nðr;dÞ
Pð0; z; tÞ ¼ const:

ð28Þ

In the present work uniform distribution of bubbles at the inlet
is assumed. This simulates the experimental condition where the
dispersed phase is introduced at the inlet of the test section
through a large number of nozzles of uniform diameter or through
a fixed bed of porous material (Eckert et al., 2003). Pressure at inlet
and outlet boundary is considered as atmospheric. At the inner and
outer wall of the pipe, gradient of all the variables are taken as zero
obeying no slip and no penetration condition. Overall possible bub-
ble sizes are divided into 40 equal volume based group to consider
the possibility of a varied distribution of air bubbles. Properties of
purified water and air at 27 �C are used for the mixture of two
phase flow.

Solving Eqs. (1)–(6) velocity field at each grid point is calculated
and the mixture velocity at that particular position is determined.
Mixture velocity is used to determine the distribution of bubble
size for the next instant based on the population balance equation
(Eq. (13)). Simulation is forward marched and the development of
flow along the down stream is closely monitored. There may be
several outcomes depending on the operating conditions. At a suf-
ficient length away from the inlet plane a statistically stable bubble
distribution (with respect to bubble size and number) may be ob-
tained. This indicates steady bubbly flow. On the other hand, one
may observe continuous increase in the bubble size due to coales-
cence. Eventually such a situation leads to slug flow. As the present
model is developed specifically for bubbly flow it cannot be used to
simulate slug flow. However, one may detect the inception of slug
flow by tracking the growth in the bubble size. Bubbly flow can ter-
minate into slug flow if the maximum bubble size exceeds a certain
limit. Various researchers proposed various limits for transition in
terms of a critical bubble diameter. Tomiyama et al. (2003) consid-
ers a bubble to be a slug bubble when its equivalent diameter is 0.6
of tube diameter. Krussenberg et al. (1999) and Lucas et al. (2005)
also suggest a differentiation between bubbly flow and slug flow
based on the equivalent diameter of the largest bubble. Taking
the queue from the above studies the criterion for bubbly to slug
transition has been set for the present study to terminate the sim-
ulation. Maximum bubble diameter in case of bubbly flow crossing
the half of the annular spacing is the inception of slug flow.



Fig. 4. Prediction of radial void distribution pattern for bubbly flow inside annuli.
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3. Results and discussions

Gas liquid flow through an annular cross section is solved using
2D axisymmetric grids in a cylindrical polar coordinate system. To
check the grid-independence of the solution, the influence of the
number of radial grids on the numerical simulation is studied.
The grid structure used in the present paper is non-uniform, with
finer mesh close to the inner and outer walls, as shown in Fig. 1.
The results for the radial profiles of the void fraction at air velocity
of 1 m/s and water velocity of 3 m/s for 30, 40 and 50 radial grids
are depicted in Fig. 3. There is no perceptible difference between
the results using 40 radial grids and 50 radial grids; therefore 40
grids were used for all simulations in this work. Present model is
used to predict the transition of bubbly flow through the annuli.
For co-current upflow with the change of phase superficial velocity,
bubbly flow transforms either into slug flow or into dispersed bub-
bly flow (Wallis, 1969). Therefore in the present work efforts have
been made to determine the boundaries of these two transitions.

3.1. Validation of the developed model

At first the developed model is validated with the reported ra-
dial void distribution from literature. Air and water at atmospheric
pressure and at a temperature of 25 �C are considered as the two
phases for the simulation of bubbly flow. Inlet bubble diameter is
kept as 0.05 times of the annular spacing. With 40 radial grids
and 100 axial grids simulations have been made for prediction of
radial void distribution. In Fig. 4a the present model is validated
with a core peaking void distribution pattern as reported by Sorour
and El-Beshbeeshy (1986). They have used electrical resistivity
probe to measure the radial void distribution pattern for annuli
having 38 mm inner and 75 mm outer diameter. Present model is
simulated for the same flow conditions and void distribution pat-
tern is reported at an axial distance of 43.5 times of the annular
spacing. It can be observed from the figure that the result of the
present model matches very well with the core peaked void distri-
bution reported in the literature.

Efforts have also made to examine the predictability of the
model for situations where bubbles are pushed towards the walls
of the annuli showing two wall peaks. Present model is used to
predict the void distribution pattern for bubbly flow inside annuli
having 38.1 mm outer diameter and 19.1 mm inner diameter. Hibi-
ki et al. (2003) performed experimental investigation on similar
Fig. 3. Effect of radial mesh refin
situations and reported void distribution pattern at a radial plane
51 times of the annular spacing away from the inlet. They have
ement on void distribution.
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used double sensor conductivity probe to measure the instanta-
neous radial pattern of void distribution. Results of the present
numerical simulation and experimental data reported by Hibiki
et al. (2003) are reported in Fig. 4b for comparison. It can be ob-
served from the figure that present model also predicts the gather-
ing of bubbles near both the wall efficiently.
3.2. Bubbly to slug transition

Next, simulations have been done for a fixed water flow rate
varying the air flow rate until the criteria for transition from bub-
bly to slug flow is met. The flow velocities of air and water at which
bubbly flow pattern changes to slug flow is plotted in the flow pat-
tern map. Next, water flow rate is changed in step and same proce-
dures are followed to obtain the next point of the flow pattern
map. Based on the local turbulent dissipation rate (e) and average
bubble diameter, breakage or coalescence of bubbles occurs at each
grid in the annuli. If the coalescence is encouraged bigger bubbles
form and they move towards the centre of the annuli showing the
core peaking pattern before the slug flow regime. For a comparison
of the estimated transition boundary with the available experi-
mental results, observation of Caetano (1984) and Kelessidis and
Dukler (1989) is plotted in the Fig. 5. It can be seen from the figure
that the computed result at 60X(r0 � ri) is matching well with
experimental observation of Caetano (1984). But observation of
Kelessidis and Dukler (1989) is over predicted by the present mod-
el. It may be noted that certain amount of subjectivity is associated
with the prediction of flow regime boundary in any experiment.
Therefore, the mismatch observed in two experimental results
(Fig. 5) is not surprising. However, the annular gap of the test sec-
tion used by Kelessidis and Dukler (1989) is 25.4 mm which is half
of that used by Caetano (1984). This may have some effect on the
transition of flow regimes. Further, experimental verifications are
needed to ascertain this.
Fig. 5. Bubbly-slug transition map for air water two phase flow throug
Comparison of the present simulation was also made with other
theoretical flow pattern transition criteria available in literature.
Transition map of bubbly flow to slug flow presented by Das
et al. (1999) and Sun et al. (2004) is depicted in the same figure.
All the predictions follow the same trend as shown by the present
model. Das et al. (1999) and Sun et al. (2004) matches well with
experimental observations of Kelessidis and Dukler (1989) but un-
der predicts the experimental observations of Caetano (1984).
Though the agreement of the present model with the data from
the narrow annuli is not excellent the concordance of the present
model and the published theoretical maps is still satisfactory. Tran-
sition model for bubbly to slug flow in circular tube presented by
Mishima and Ishii (1984) is also plotted in Fig. 5 as a benchmark.
All the transition boundaries exhibit the same trend depicted by
the Mishima and Ishii (1984) model. It essentially signifies identi-
cal physical phenomena responsible for the transition of bubbly to
slug flow in both the geometries. The influence of geometry is
manifested in the shift between the transition boundaries of the
annuli and the circular tube.

The macroscopic nature of the population balance equation of
the present model allows probing into the distribution of local void
fraction. Simulations were made for various air and water flow
rates through an annulus of 50 mm outer diameter and 20 mm in-
ner diameter. Diameter of the bubbles at the inlet is kept at
1.5 mm. It has been observed that the void distribution pattern
changes with the change in superficial flow velocities. Distribution
of gaseous phase at various superficial flow velocities are depicted
in Fig. 6a. At low air and water flow rates bubbles entering into the
annulus try to shift towards the outer wall. Result for 0.3 m/s water
velocity and 0.1 m/s air velocity shows a sharp peak in the void dis-
tribution profile at the outer wall of the annular geometry. With
the increase of gas flow rate some bubbles move towards the inner
wall while most of them continue to stick with the outer wall of
the annulus. As a result a secondary peak in the void distribution
pattern can be seen near the inner wall along with the dominant
h annuli along with available experimental and theoretical results.



Fig. 6. Various shapes of void and bubble distribution pattern in a radial plane for
different superficial velocities of air and water.
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peak at the outer wall. One example of such type of distribution is
plotted in Fig. 6a for liquid and air velocities of 0.3 m/s and 0.6 m/s
respectively. Further increase in liquid velocity forces the bubbles
to move through the core of the annuli due to the increased vibra-
tion induced by turbulence. As a result, at a liquid velocity of 0.6 m/
s and gas velocity 0.6 m/s a third peak at the core of the annular
gap can be observed. It may be noted that the peaks at the walls
are lowered with the appearance of a new peak at the center of
the annulus. At high liquid flow rate the tendency of a bubble to
shift towards the core increases. As a result a single dominant peak
at the center of the annular gap is observed. In Fig. 6a void distri-
bution pattern for liquid flow rate of 1 m/s and gas flow rate of
0.1 m/s shows similar kind of phenomena. From this distribution
it is clear that most of the bubbles concentrate in the central region
of the annular spacing at high liquid superficial velocities. Largest
bubble size present in the control volumes along the radial plane
is also depicted in Fig. 6b for the above mentioned combinations
of liquid and gaseous phase velocities. It can be observed from
the figure that as a dominant peak is observed near the wall (peak
at outer wall and peak at both walls) largest possible bubble size
near the wall decreases. On the other hand the peak of void distri-
bution at the center of the annuli is generated due to compara-
tively bigger sized bubbles.

At a particular liquid and gas velocity if the mixture velocities
are conducive for smaller bubbles, predominantly breakage of big-
ger bubbles occurs. Due to the presence of large numbers of smal-
ler sized bubbles average diameter of bubbles at a control volume
reduces. Smaller average bubble diameter generates higher interfa-
cial forces which dominate over the wall force. This helps the bub-
bles at the centre of the tube to move towards the wall. As a result
wall peaking void distribution pattern is generated.

On the other hand, at other phase velocities which support coa-
lescence, bigger bubbles are generated. Due to the increase of aver-
age bubble diameter inside the tube, interfacial forces decrease.
This makes the wall force to dominate and the bubbles tend to
crowd towards the core. Core peaking can be observed due to the
accumulation of big bubbles at the tube centre. At some interme-
diate velocities of the phases when both breakage and coalescence
are significant, big bubbles are gathered at the tube centre and
smaller bubbles at the wall. As a result a two peaked structure
can be observed.

From the above exercise it is clear that the radial voidage distri-
bution vary substantially depending on the operating conditions.
Further, one mode of voidage distribution may change into an-
other. In Fig. 7 four well demarcated regimes has been shown in-
side the bubbly flow pattern where outer wall peaking, both wall
peaking, three peak and core peak can be viewed prominently.
The simulation is for an input bubble diameter of 1.5 mm inside
a 30 mm annular spacing with 20 mm inner radius. It may be
appreciated that before the transition into slug flow regime, the
bubbles tend to gather at the core of the annuli. This causes coales-
cence of the bubbles. Coalescence of the spheroidal bubbles pro-
duces cap bubbles which in turn grows to form gas slugs and
signifies the inception of slug flow. On the other hand, at a rela-
tively high water flow rate as coalescence is prevented bubbly flow
terminates into dispersed bubbly flow. The mechanism of this
transition has been discussed in a later section.

3.3. Influence of input parameters

In the present model coalescence and break up are the only
mechanisms behind the change in bubble size. Diameter of inlet
bubble also influences the evolution of bubble size further down-
stream. Studies have been made for different homogeneous and
non-homogeneous input of bubbles at the inlet plane. Fig. 8a de-
picts the void fraction profile for two different input diameters of
bubbles inside the annular passage (ID = 20 mm, OD = 50 mm) for
a liquid velocity of 0.3 m/s and air velocity of 0.6 m/s. The void
fraction profiles are computed at 30D from the inlet plane to avoid
entrance effect. Dominant peaks at the walls in the void distribu-
tion profile can be seen for bubbles of 2 mm diameter. For such
small bubbles interfacial forces dominate over the effect of wall
force. Wall force becomes comparable to the decreased interfacial
forces when bubbles of 4 mm diameter are introduced at the inlet
plane for same flow velocities. Strong core peaking can be viewed
in this case. Simulation has also been made for simultaneous entry
of 2 mm and 4 mm bubbles at the inlet plane keeping the inlet void
fraction constant. The figure depicts three peak distributions as the
hydrodynamics is influenced by the individual behavior of both the
sizes. It can be easily understood that 4 mm bubbles crowd to-
wards the core of the annuli while 2 mm bubbles tends to move to-
wards the wall of the annuli. Largest bubble sizes in the radial
control volumes are also depicted in Fig. 8b for the following sizes
of bubble diameter at the entry – 2 mm, 4 mm and an equal mix-
ture of 2 mm and 4 mm bubbles by volume. It can be observed
from the figure that the largest possible bubble size for the 4 mm
bubbles at the entry is higher compared to that when 2 mm bub-
bles enter at the inlet. This also confirms the core peaking for the
bigger bubbles and wall peaking for smaller bubbles. For simulta-
neous entry of 2 mm and 4 mm sized bubbles, bubbles of bigger
diameter are observed at the core as well as both at the inner
and the outer walls.

Influence of inlet bubble size on flow pattern map has also been
studied using the present population balance technique. In Fig. 9



Fig. 7. A map in terms of flow velocities for different shapes of void distribution.

Fig. 8. Effect of different sized homogeneous and non-homogeneous bubble input in annular two phase flow over void fraction and bubble distribution.
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Fig. 9. Flow pattern map for bubbly flow to slug flow for input of 2 mm, 4 mm and a
mixture of 2 mm and 4 mm bubbles at the inlet of annular geometry.
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three flow pattern transition boundaries corresponding to 2 mm,
4 mm and simultaneous entry of 2 mm and 4 mm bubbles at the
Fig. 10. Effect of annuli spacing over radial void and
inlet plane are presented for a comparison. As the inlet bubble size
increases slug flow appears at a lower liquid flow rate compared to
smaller bubbles for a fixed air flow rate. Transition boundary for
2 mm bubble size at the entry shifts upward compared to the pre-
vious case. While both 2 mm and 4 mm diameter bubbles are
introduced simultaneously transition line in the flow pattern
map lies in between their individual transition boundaries. This
evidently shows that transition boundaries are influenced by inlet
bubble size. All the mechanistic models (Mishima and Ishii, 1984;
Hasan and Kabir, 1992; Caetano et al., 1992) of flow regime transi-
tion failed to provide this information.

As mentioned earlier, the annular gap (defined by a non-dimen-
sional term r* = (ro � ri)/ro) also influences the distribution of void
fraction. Outcome of void distribution profile for various annular
spacing is also studied using the present model. To evaluate the ef-
fect of wall forces on the dispersed phase the outer diameter of the
annuli is kept constant and inner radius is varied in order to avail
various spacing between the walls. At a liquid flow rate of 0.3 m/s
and air flow rate of 0.1 m/s void distribution profile for various
annular spacing is depicted in Fig. 10a. A sharp peek near the outer
wall can be seen for narrow spacing of the annuli (r* = 0.2 and 0.4).
The height of the peak for r* = 0.2 is higher compared to the peak at
bubble distribution for air water two phase flow.
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r* = 0.4. But as r* increase to 0.6 a small peak appears at the inner
wall in addition to the peak at the outer wall. This trend continues
for r* = 0.8. Increase in the secondary peak height and decrease in
the primary peak height can be seen as r* changes from 0.6 to
0.8. This clearly shows that the effect of wall forces becomes signif-
icant in case of narrow spaced annuli. As the wall force diminishes
with the channel spacing two peaks are formed at inner and outer
periphery. Fig. 10b shows the largest bubble size present in the
control volumes along the radial plane for various spacing of the
annuli. It can be observed that the bubbles with the largest size
are present near the outer wall. It also supports the outer wall
peaking of the void distribution as shown in Fig. 10a. Largest pos-
sible bubble size decreases as the r* decreases.

Flow pattern map for various gap widths of the annuli is pre-
sented in Fig. 11. The figure shows an interesting trend reversal
Fig. 11. Prediction of Bubbly to slug flow pattern map for

Fig. 12. Transitions of air water bubbly flow for different subgroup discre
for bubbly to slug transition. At the range of low air velocity tran-
sition to slug flow occurs at lower water flow rates with the in-
crease in annular gap. As the wall force reduces with the annular
gap the gas bubbles stay near the wall. This is not conducive for
the formation of gas slugs. Only with the increase of gas flow rate
or with the increase of the annular gap the void fraction in the core
region increases giving rise to slug formation. On the other hand, at
higher gas flow rate coalescence becomes predominant as the
annular gap increases. This results in a transition to slug flow at
lower water velocity.

3.4. Bubbly to dispersed bubbly transition

At higher liquid flow rate spheroidal bubbles break into smaller
size and produce a homogeneous mixture of tiny air bubbles. This
various annuli spacing in air water two phase flow.

tizations through annuli along with published experimental results.
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is termed as dispersed bubbly flow (Taitel et al., 1980). At this con-
dition the turbulence intensity is high enough to prevent the coa-
lescence of the smaller bubbles. As a result, gas phase can remain
dispersed in the form of spherical bubbles even at a high value of
void fraction. The present model is extended to indicate the incep-
tion of dispersed bubbly flow by considering suitable closure rela-
tionship as the transition criteria. Equating turbulent kinetic
energy and drop surface energy Hinze (1955) proposed a mecha-
nism for estimating the maximum bubble size possible in dis-
persed bubbly flow for a fluid pair combination. The criterion is
as follows:
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To investigate the bubbly to dispersed bubbly transition in the
perspective of the present CFD model the simulations have been
carried out at higher liquid flow rates. The evolution of bubble size
has been closely monitored to check the criteria given in Eq. (29).
The boundary for bubbly to dispersed bubbly transition, as ob-
tained from the simulation, is depicted in Fig. 12. In the same figure
the available experimental data and theoretical regime boundaries
proposed by other researchers have also been depicted. Present
model gives a better prediction of the experimental data of Hasan
and Kabir (1992) throughout the domain in comparison with the
data of Caetano et al. (1992) and Kelessidis and Dukler (1989).
However, at lower air velocity there exists some deviation between
the model prediction and experimental observation.

In the present model the possible span of bubble diameter is di-
vided into 40 equal subgroups based on volume. As the volume of a
bubble is a cubic function of its diameter, such a division generates
a bubble population where the difference in the diameters be-
tween two subsequent subgroups is larger for small bubbles. This
makes the distribution lopsided towards the large bubbles. In the
simulation, daughter bubbles generated due to breakup are divided
into its neighboring subgroups keeping its mass and number con-
stant. The formation of small bubbles of intermediate size cannot
be captured effectively in the lower range of diameter. The closure
law for bubbly to dispersed bubbly transition depends directly on
the spacing of bubble diameters of lower subgroups. To circumvent
this, an alternate simulation has been made using 80 subgroups
within the span of possible bubble volume. This minimizes the er-
ror in predicting the flow pattern due to birth of arbitrary sized
bubbles caused by breakage.

Fig. 12 also depicts the transition curve for bubbly to dispersed
bubbly flow inside annuli using 80 subgroups of bubble volume. It
is evident that an increase in number of subgroups improves the
prediction of regime boundary for bubbly to dispersed bubbly flow.
It would be prudent to investigate whether introduction of more
number of subgroups alters the bubbly slug regime boundary. In
the same figure both the regime boundaries are plotted for 40
and 80 subgroups of bubble volume and it is observed that there
is no significant change in bubbly slug transition in comparison
to shift of regime boundary for bubbly-dispersed bubbly transition.
4. Conclusion

Transition from bubbly flow to the neighboring flow regimes
during gas liquid two phase upflow through vertical annuli is mod-
eled using the population balance equation coupled with a two-
fluid model. Coalescence and breakup of bubbles due to the local
hydrodynamics are taken care of to study the evolution of bubble
size and generation of slug bubbles. Force arising from the interfa-
cial interactions and wall lubrication are considered in the eulerian
two fluid momentum equations as source terms.
Using the present model the local distribution of void fraction at
a radial plane for different flow velocities has been studied inside
the annuli. Outer wall peaking, both wall peaking, three peak and
core peak can be separately identified for different ranges of phase
velocities. Flow regime transition boundaries have also been gen-
erated from the numerical results that effectively show separate
sub-regions for different distributions of the dispersed phase
(Fig. 5). The regime boundary for bubbly flow to slug flow com-
pares well with the reported experimental observations and theo-
retical predictions. Change of void fraction profile and flow pattern
map has been analyzed for different inputs of bubble diameter at
the inlet plane of the annular geometry. It has been seen that larger
bubbles tries to be in the core of the annulus. These bubbles expe-
rience a further growth in size due to coalescence and gives rise to
core peaking. With the increase of air flow rate core peaked bubbly
flow transforms into slug flow (Fig. 7). Simultaneous entry of two
different sized bubbles shows a mixed pattern reflecting the indi-
vidual characteristics of the inlet bubble groups. It influences the
transitions of the flow patterns also.

Further, the influence of the annular gap over void distribution
has been studied. For narrow annular passages wall forces domi-
nate over the interfacial forces prompting the bubbles to come
close to the outer wall of the annular geometry. With an increase
in the annular spacing interfacial forces become comparable to
the wall forces. In the absence of any strong force, the bubble
movement is neither biased towards the core nor towards the wall.
At low air flow rate the appearance of slug bubbles in wide annuli
is detected at lower water flow rate. On the contrary, at higher flow
rate a relatively low liquid flow rate gives rise to slug bubble for-
mation in narrow annuli due to the increased intrinsic vibration
of the bubbles. It is important to note that the present simulation
have been made for annular dimensions common in engineering
practice and for which published experimental results and theoret-
ical predictions are available. In case of extremely narrow annuli
the dominating forces may be different from those considered. As
a result all together different flow regimes may be obtained (Nak-
oryakov et al., 1992). Simulation of two phase flow through narrow
annuli could be a separate topic of research.

Simulation at a high liquid flow rate shows a decrease in the
bubble size even for increasing air flow rates. Using the criteria
proposed by Hinze (1955) the transition to dispersed bubbly flow
could be predicted readily. The prediction matches well with the
experimental data of Caetano et al. (1992) at lower air flow rate
and that of Hasan and Kabir (1992) for higher flow rate. An
improvement in the prediction is observed when the number of
bubble subgroup is increased from 40 to 80. However, such a
change has only a marginal effect on the transition boundary from
bubbly to slug flow.
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